Project Details

ROSES ID: NNH15ZDA001N
Selection Year: 2015
Program Element: Focused Science Topic
Topic: The Solar-Stellar Connection

Project Title:

Observational Constraints and Tests for Dynamos in Solar-like Stars
PI Name: Steven H. Saar
PI Email: atn@g.ucla.edu
Affiliation: Smithsonian Institution/Smithsonian Astrophysical Observatory Project Member(s):

- Meibom, Soren ; Co-I; Smithsonian Institution/Smithsonian Astrophysical Observatory
- Miller, Brendan P; Co-I; College of St. Scholastica
- do Nascimento, Jose Dias; Collaborator; Federal University of Rio Grande do Norte, Brazil
- Neff, James E; Co-I; College of Charleston

Summary

Data from other stars can help solar dynamo models, putting more on constraints on the models, and then testing them over a wide range of properties. A surprising amount of information can be gleaned with careful analysis of a variety of stellar data.

Starting with existing databases and published values, and later using data generated by other FST and the growing VSSO database, we propose to: 1) Generate cycle periods, amplitudes, secondary periods, rotational periods, surface differential rotation, diffusivity and meridional flow estimates, identify activity belts, and see how all these vary with mass and age.
2) Explore mass and age dependence of stars which may be in magnetic grand minima, and improve Ca II HK calibration,
3) Determine how the rates of large flares and CMEs vary with mass and age, and 4) explore new dynamo cycle proxies.

These will be generated from existing data and datasets
initially and sent to the dynamo modeling teams and the VSSO;
later improvements and additional constraints will be derived from new data coming into the VSSO and from other sources. These results will lay a crucial foundation for improving our physical understanding of the dynamos of solar-type stars and how they evolve in time.

Publication References:

no references

