

Plasmaspheric Plumes and Erosion During the 7-8 September 2017 Storm

Cristian Ferradas^{1,2}, Mei-Ching Fok¹, Suk-Bin Kang^{1,2}, Joe Huba³, and Alex Glocer¹

¹Geospace Physics Laboratory, NASA Goddard Space Flight Center ²Catholic University of America ³Syntek Technologies Inc.

> LWS Cold Plasma Team Meeting 23-24 March 2023

Solar wind and Geomagnetic conditions

Severe Plasmaspheric Erosion

Arase

Space Weather

RESEARCH ARTICLE 10.1029/2019SW002168

10.1023/20135 #00210

Space Weather Events of 4-10 September 2017

Key Points:

- An extreme erosion of the plasmasphere was observed by the ERG/Arase spacecraft (L_p1.6–1.7)
- The trough minimum location identified in GNSS-TEC moved equatorward as low as ~48 degree magnetic latitude (*L* = ~2.2)
- The observed erosion was qualitatively reproduced by the IPE simulation by including the effect of the penetration electric field

Response of the Ionosphere-Plasmasphere Coupling to the September 2017 Storm: What Erodes the Plasmasphere so Severely?

Yuki Obana¹, Naomi Maruyama^{2,3}, Atsuki Shinbori⁴, Kumiko K. Hashimoto⁵, Mariangel Fedrizzi^{2,3}, Masahito Nosé⁴, Yuichi Otsuka⁴, Nozomu Nishitani⁴, Tomoaki Hori⁴, Atsushi Kumamoto⁶, Fuminori Tsuchiya⁷, Shoya Matsuda⁸, Ayako Matsuoka⁸, Yoshiya Kasahara⁹, Akimasa Yoshikawa¹⁰, Yoshizumi Miyoshi⁴, and Iku Shinohara⁸

¹Department of Engineering Science, Faculty of Engineering, Osaka Electro-Communication University, Neyagawa, Japan, ²CIRES, University of Colorado Boulder, Boulder, CO, USA, ³NOAA Space Weather Prediction Center, Boulder, CO, USA, ⁴Institute for Space-Earth Environmental Research (ISEE), Nagoya University, Nagoya, Japan, ⁵School of Agriculture, Kibi International University, Minamiawaji, Japan, ⁶Department of Geophysics, Tohoku University, Sendai, Japan, ⁷Planetary Plasma and Atmospheric Research Center (PPARC), Tohoku University, Sendai, Japan, ⁸Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, Sagamihara, Japan, ⁹Graduate School of Natural Science and Technology, Kanazawa University, Kanazawa, Japan, ¹⁰Department of Earth and Planetary Sciences, Kyushu University, Fukuoka, Japan

The study suggested that the storm time convection electric field can explain the degree of severity in plasmaspheric erosion.

RBSP Observations of Plasmaspheric Erosion

Backup Slides

Van Allen Probes-B & Arase

