Three-dimensional nonlinear evolution of equatorial ionospheric spread-F bubbles

M. J. Keskinen
Charged Particle Physics Branch, Plasma Physics Division, Naval Research Laboratory, Washington, DC, USA

S. L. Ossakow
Plasma Physics Division, Naval Research Laboratory, Washington, DC, USA

B. G. Fejer
Center for Atmospheric and Space Studies, Utah State University, Logan, Utah, USA

Received 27 March 2003; revised 9 May 2003; accepted 10 June 2003; published 26 August 2003.

[1] Using numerical simulation techniques, we present the first study of the three-dimensional nonlinear evolution of an equatorial spread-F bubble. The background ionosphere used to initialize the bubble evolution is computed using a time-dependent first-principles equatorial plasma fountain model together with a prereversal enhancement vertical drift model. We find that finite parallel conductivity effects slow down both the linear and nonlinear bubble evolution compared to the two-dimensional evolution. In addition we find that bubble-like structures with extremely sharp density gradients can be generated off the equator at equatorial anomaly latitudes in agreement with recent observations.

1. Introduction

[2] Equatorial spread-F bubbles, plumes, and depletions are a major class of ionospheric dynamics and structure and are a distinct manifestation of ionospheric weather. Recently, several observational studies both in quiet [Kelley et al., 2002; Otsuka et al., 2002; Stephan et al., 2002; Chen et al., 2001; Huang et al., 2001; Sahai et al., 2000; Sinha et al., 1999; Kil and Heelis, 1998; Basu et al., 1996; Weber et al., 1996] and stormtime conditions [Basu et al., 2001a; Basu et al., 2001b; Yeh et al., 2001] of equatorial spread-F have demonstrated the need for a full three-dimensional nonlinear model of the evolution of spread-F bubbles. Kelley et al. [2002] have presented ground-based observations of a major equatorial spread-F event from Hawaii which is far from the geomagnetic equator. Their observations showed that bubbles reached altitudes of over 1500 km with strong effects recorded at the Hawaii observing site. Otsuka et al. [2002] reported equatorial F-region airglow depletions extending to much higher latitudes off the geomagnetic equator. In stormtime periods, [Basu et al., 2001a; Basu et al., 2001b] demonstrated that strong ionospheric density structures can be observed at equatorial anomaly latitudes during equatorial spread-F events. An outstanding problem is the three-dimensional nonlinear evolution of equatorial spread-F bubbles.

[3] Much work has been performed relating to the two-dimensional nonlinear evolution of equatorial spread-F bubbles and plumes in the equatorial plane [Scannapieco and Ossakow, 1976; Keskinen et al., 1980, 1993; Hysell et al., 1994; Sekar et al., 1995]. The quasi-three-dimensional nonlinear evolution of equatorial spread-F bubbles using magnetic flux tube integration techniques [Zalesak et al., 1982; Keskinen et al., 1998] has been studied. Some work on the linear theory of the three-dimensional evolution of equatorial spread-F bubbles [Basu, 2002] has been published. However, the full three-dimensional nonlinear evolution of equatorial spread-F bubbles has not been quantified. A fully three-dimensional nonlinear treatment is needed in order to develop quantitative predictive mechanisms for equatorial spread-F and to compare with experimental observations. In this paper we study the three-dimensional nonlinear evolution of equatorial spread-F bubbles using numerical simulation techniques. In section 2 we outline the basic nonlinear bubble model. In addition we describe the background ionospheric model used in the equatorial nonlinear bubble model. In section 3 we give results from the nonlinear bubble simulations. Finally, we summarize and discuss the results.

2. Model

[4] To compute the three-dimensional nonlinear evolution of equatorial spread-F bubbles we use the Mesoscale Ionospheric Dynamics and Assimilation Model (MIDAS) [Keskinen et al., 1998]. MIDAS contains the equations for density, momentum, and current continuity

\[
\frac{\partial n_\alpha}{\partial t} + \nabla \cdot n_\alpha V_\alpha = -v_{\text{RI}_\alpha}
\]

\[
\left(\frac{\partial}{\partial t} + V_i \cdot \nabla \right) V_i = \frac{e}{m_i} \left(E + c^{-1} V_i \times B \right) - \nu_\alpha (V_i - V_e) - \nu_{\text{in}} - (V_i - U) + g
\]

\[
-\frac{e}{m_e} \left(E + \frac{1}{c} V_e \times B \right) - m_e \nu_\alpha (V_e - V_i) - m_e \nu_{\text{in}} (V_e - U) = 0
\]
where α denotes ion or electron species, n_a, the density, m_a, the mass, v_{in} the neutral collision frequency, U is the thermospheric wind, v_{en}, v_{ei}, is the ion-electron and electron-ion Coulomb collision frequency, E the electric field with $E_\perp = -\nabla_\perp \phi$ and $E_\parallel = -\nabla_\parallel \phi$ with ϕ the electrostatic potential, V is the velocity, g is gravity, and v_r is the recombination rate. The electron gyrofrequency is taken to be large compared to the electron collision frequency and electron inertial effects have been ignored. From equations (2), (3) the current J can be written

$$ J = J_{\text{pol}} + J_{\text{hall}} + J_{\text{pol}} + J_{\parallel} $$

where

$$ J_{\text{pol}} = \sigma_p \left(\frac{g \times B}{e v_{in}} + \frac{U \times B}{c} \right) $$

$$ J_{\text{hall}} = \sigma_H \left(-\frac{E_\perp \times B}{B} + \frac{B}{e v_{in}} g + \frac{B_\parallel}{c} U \right) $$

$$ J_{\text{pol}} = c_n \left(\frac{\partial}{\partial t} + V_h \cdot \nabla \right) \left(E + \frac{m_e}{e} g \right) $$

$$ J_{\parallel} = \sigma |E| $$

where $\sigma_p = (n_e c)/(\alpha (1 + \alpha^2)^2)$, $\sigma_H = \alpha \sigma_{pe} \sigma_{|E|} = ne^2/m_e (v_{ei} + v_{en})$, $\alpha = v_{in}/\Omega_e$, $c_n = e^2/4\pi \sqrt{2} \nu^2$, and $V_h = (eB^2/\mu_0)(E + m_e g/e) \times B$.

We include ion polarization J_{pol} currents to accurately treat the high altitude evolution of the bubble dynamics. Equation (8) adds parallel conductivity effects. Equation (1), (4) are solved using finite-difference numerical techniques. The MIDAS code has 200 high altitude evolution of the bubble dynamics. Equation (8) is solved using multi-dimensional flux computing the exact eigenfunction using linear theory perturbation along the magnetic field is found from equation (1), (4) and the initial SAMI2 density profile. Figure 3 shows the nonlinear bubble evolution at $t = 3850$ sec. As can be seen the bubble has reached an altitude of approximately 750 km. Figure 4 shows the nonlinear evolution at the northern anomaly at $t = 3350$ sec. The F-peak is lower in altitude at the anomaly than at the equator, a manifestation of the equatorial plasma fountain. In addition the topside scale length is smaller than at the equator and anomaly when parallel conductivity effects are included. The growth times are slower than that predicted by local theory but faster than magnetic-flux-tube-integrated evolution of several ion species, i.e., O^+, N_2^+, NO+, O_2^+, H^+, He^+, N^+ in the altitude range of approximately 100 km to several thousand kilometers. SAMI2 includes ion inertial effects for accurate ion dynamics at high altitudes.

3. Results

[6] In order to generate a background ionosphere with which to initialize the MIDAS model we use SAMI2 with a vertical drift model. We take a quiet time vertical drift model as shown in Figure 1. This is representative of equinoctial medium solar flux conditions [Scherliess and Fejer, 1999].

[7] Figure 2 gives the background F-region O^+ ionospheric conditions at 1900 LT at the longitude of Jicamarca Radio Observatory in Peru. As shown in Figure 2 equatorial anomaly crests are evident at approximately −24 and 9 degrees geographic latitude. The peak to trough ratio is approximately 1.8. Jicamarca is located at −12 degrees. The background E-region NO+ ionospheric profile at the same local time was also computed using the SAMI2 model and used to initialize the MIDAS bubble simulation.

[8] We perturb the profile in Figure 2 with a 10 km sinusoidal density fluctuation with amplitude of 4 percent in the east-west direction. The form of the initial density perturbation along the magnetic field is found from computing the exact eigenfunction using linear theory with equation (1), (4) and the initial SAMI2 density profile. Figure 3 shows the nonlinear bubble evolution at $t = 3850$ sec. As can be seen the bubble has reached an altitude of approximately 750 km. Figure 4 shows the nonlinear evolution at the northern anomaly at $t = 3350$ sec. The F-peak is lower in altitude at the anomaly than at the equator, a manifestation of the equatorial plasma fountain. In addition the topside scale length is smaller than at the equator, i.e., the topside O^+ density falls off more quickly. We have found that the bubble structures grow slower at both the equator and anomaly when parallel conductivity effects are included. The growth times are slower than that predicted by local theory but faster than magnetic-flux-tube-integrated evolution of several ion species, i.e., O^+, N_2^+, NO+, O_2^+, H^+, He^+, N^+.
model. The physical mechanism for the slower growth is that
the parallel conductivity diverts part of the perpendicular ion
Pedersen current, responsible for driving the Rayleigh-Taylor
instability, into parallel electron current thus reducing the
growth rate of the Rayleigh-Taylor instability. The genera-
tion of ionospheric structure at anomaly latitudes during
equatorial spread-F as seen in these simulations is consistent
with recent observational studies [Basu et al., 2001a; Basu et
al., 2001b] showing indirectly, through radio scintillation
effects, that strong ionospheric density gradients are occur-
ring at equatorial anomaly latitudes in both quiet and
stormtime periods during equatorial spread-F events. In
addition recent optical studies of equatorial spread-F [Otsuka
et al., 2002] have demonstrated strong density depletions off
the geomagnetic equator during equatorial spread-F events.

4. Summary
[9] We have presented the first study of the nonlinear three-
dimensional evolution of an equatorial spread-F bubble.
The initial background F-region and E-region ionosphere
is taken from a time-dependent equatorial plasma fountain
model. We have found that finite parallel conductivity
effects slow down the linear and nonlinear evolution of
the equatorial spread-F bubble as compared with the two-
dimensional evolution. In addition, we find bubble-like
structures can be generated at anomaly latitudes with
extremely steep density gradients. Our results are consistent
with recent radio and optical studies showing strong density
gradients at anomaly latitudes during equatorial spread-F.
[10] In the future we hope to add the effects of thermo-
spheric winds to the nonlinear evolution of three-dimen-
sional spread-F bubbles and to study the higher altitude
evolution of the spread-F bubbles.

[11] Acknowledgments. This work was supported by NASA. This
work uses the SAMI2 ionosphere model written and developed by
the Naval Research Laboratory.

References
Basu, S., S. Basu, C. E. Valladares, H. C. Yeh, S. Y. Su, E. MacKenzie,
P. J. Bullet, Ionospheric effects of major magnetic storms during the Interna-
tional Space Weather Period of September and October 1999; GPS ob-
servations, VHF/UHF scintillations, and in situ density structures at
Sultan, and M. J. Keskinen, Response of the equatorial ionosphere in the
South Atlantic region to the great magnetic storm of July, 15, 2000,
Zeningonul, R. Sheehan, J. W. Meriwether, M. A. Biondi, H. Kuenzler,
and J. Espinoza, Scintillations, plasma drifts, and neutral winds in the
Basu, B., On the linear theory of equatorial plasma instability: comparison
structures in an Equatorial spread-F event, Geophys. Res. Lett., 28,
Huang, C. S., M. C. Kelley, and D. L. Hysell, Nonlinear Rayleigh Taylor
instabilities, atmospheric gravity waves, and equatorial spread-F. J.
Huang, C. Y., W. J. Burke, J. S. Machuzak, L. C. Gentile, and P. J. Sultan,
DMSP observations of equatorial plasma bubbles in the topside iono-

M. J. Keskinen, Charged Particle Physics Branch, Plasma Physics Division, USA.

S. L. Ossakow, Plasma Physics Division, Naval Research Laboratory, Washington, DC 20375, USA.

B. G. Fejer, Center for Atmospheric and Space Studies, Utah State University, Logan, UT, USA.