

LWS TR\&T grant: NNG04GN14G PI: Simon Wing, JHU/APL
Wing, S., J. R. Johnson, P. T. Newell, and C.-I. Meng (2005), Dawn-dusk asymmetries, ion spectra and sources in the northward IMF plasma sheet, J. Geophys. Res., 110, A08205, doi:10.1029/2005JA011086.

Oieroset, M., J. Raeder, T. D. Phan, S. Wing, J. P. McFadden, W. Li, M. Fujimoto, H. Reme, and A. Balogh (2005), Global cooling and densification of the plasma sheet during an extended period of purely northward IMF on October 22-24, 2003, Geophys. Res. Lett., 32, L12S07, doi:10.1029/2004GL021523.

The results provide observational constraints to (1) the hotly debated competing solar wind entry mechanisms into the plasma sheet and (2) plasma sheet ion transport and losses
observational constraints
cold-component (magnetosheath/solar wind) ions

- temperature dawn-dusk asymmetry (heating on the dawnside)
- rate of density increase with Δt (the number of hours IMF has been northward)
proposed mechanisms
cold-component (magnetosheath) ions
- poleward of the cusp reconnections [e.g., Song and Russell, 1992].
- K-H instability [e.g., Otto and Fairfield, 2000; Fairfield et al., 2000].
- Wave-induced diffusion, e.g., kinetic Alfven waves [Johnson and Cheng, 1997; 2001; Chen, 1999].
- Curvature/gradient drift
hot-component (nominal plasma sheet) ions
- Loss of hotter hot-component ions, e.g., precipitation, VB drift ?
- wave mediated interactions with cold 2^{2} component ions?

